Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 685
Filter
1.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Article in English | MEDLINE | ID: covidwho-20243008

ABSTRACT

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Subject(s)
COVID-19 , Methyltransferases , Humans , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics , Exoribonucleases
2.
Sci Rep ; 13(1): 9204, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20242518

ABSTRACT

The recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , Drug Discovery/methods
3.
J Med Virol ; 95(6): e28881, 2023 06.
Article in English | MEDLINE | ID: covidwho-20235484

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.


Subject(s)
COVID-19 , Interferon Regulatory Factor-3 , Viral Nonstructural Proteins , Humans , COVID-19/immunology , Immune Evasion , Interferon Regulatory Factor-3/genetics , Interferons , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
4.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20238192

ABSTRACT

Essential oils (Eos) have demonstrated antiviral activity, but their toxicity can hinder their use as therapeutic agents. Recently, some essential oil components have been used within safe levels of acceptable daily intake limits without causing toxicity. The "ImmunoDefender," a novel antiviral compound made from a well-known mixture of essential oils, is considered highly effective in treating SARS-CoV-2 infections. The components and doses were chosen based on existing information about their structure and toxicity. Blocking the main protease (Mpro) of SARS-CoV-2 with high affinity and capacity is critical for inhibiting the virus's pathogenesis and transmission. In silico studies were conducted to examine the molecular interactions between the main essential oil components in "ImmunoDefender" and SARS-CoV-2 Mpro. The screening results showed that six key components of ImmunoDefender formed stable complexes with Mpro via its active catalytic site with binding energies ranging from -8.75 to -10.30 kcal/mol, respectively for Cinnamtannin B1, Cinnamtannin B2, Pavetannin C1, Syzyginin B, Procyanidin C1, and Tenuifolin. Furthermore, three essential oil bioactive inhibitors, Cinnamtannin B1, Cinnamtannin B2, and Pavetannin C, had significant ability to bind to the allosteric site of the main protease with binding energies of -11.12, -10.74, and -10.79 kcal/mol; these results suggest that these essential oil bioactive compounds may play a role in preventing the attachment of the translated polyprotein to Mpro, inhibiting the virus's pathogenesis and transmission. These components also had drug-like characteristics similar to approved and effective drugs, suggesting that further pre-clinical and clinical studies are needed to confirm the generated in silico outcomes.


Subject(s)
COVID-19 , Oils, Volatile , Humans , SARS-CoV-2 , Antiviral Agents/chemistry , Oils, Volatile/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Peptide Hydrolases/metabolism , Molecular Dynamics Simulation
5.
Eur J Med Chem ; 257: 115491, 2023 Sep 05.
Article in English | MEDLINE | ID: covidwho-2325420

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication and transcription and represents an attractive drug target for fighting COVID-19. Many SARS-CoV-2 Mpro inhibitors have been reported, including covalent and noncovalent inhibitors. The SARS-CoV-2 Mpro inhibitor PF-07321332 (Nirmatrelvir) designed by Pfizer has been put on the market. This paper briefly introduces the structural characteristics of SARS-CoV-2 Mpro and summarizes the research progress of SARS-CoV-2 Mpro inhibitors from the aspects of drug repurposing and drug design. These information will provide a basis for the drug development of treating the infection of SARS-CoV-2 and even other coronaviruses in the future.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Molecular Docking Simulation
6.
Biochemistry ; 62(11): 1744-1754, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-2324962

ABSTRACT

A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Biosynthesis , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism
7.
J Virol ; 97(6): e0046523, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2326363

ABSTRACT

Coronavirus genome replication and expression are mediated by the viral replication-transcription complex (RTC) which is assembled from multiple nonstructural proteins (nsp). Among these, nsp12 represents the central functional subunit. It harbors the RNA-directed RNA polymerase (RdRp) domain and contains, at its N terminus, an additional domain called NiRAN which is widely conserved in coronaviruses and other nidoviruses. In this study, we produced bacterially expressed coronavirus nsp12s to investigate and compare NiRAN-mediated NMPylation activities from representative alpha- and betacoronaviruses. We found that the four coronavirus NiRAN domains characterized to date have a number of conserved properties, including (i) robust nsp9-specific NMPylation activities that appear to operate largely independently of the C-terminal RdRp domain, (ii) nucleotide substrate preference for UTP followed by ATP and other nucleotides, (iii) dependence on divalent metal ions, with Mn2+ being preferred over Mg2+, and (iv) a key role of N-terminal residues (particularly Asn2) of nsp9 for efficient formation of a covalent phosphoramidate bond between NMP and the N-terminal amino group of nsp9. In this context, a mutational analysis confirmed the conservation and critical role of Asn2 across different subfamilies of the family Coronaviridae, as shown by studies using chimeric coronavirus nsp9 variants in which six N-terminal residues were replaced with those from other corona-, pito- and letovirus nsp9 homologs. The combined data of this and previous studies reveal a remarkable degree of conservation among coronavirus NiRAN-mediated NMPylation activities, supporting a key role of this enzymatic activity in viral RNA synthesis and processing. IMPORTANCE There is strong evidence that coronaviruses and other large nidoviruses evolved a number of unique enzymatic activities, including an additional RdRp-associated NiRAN domain, that are conserved in nidoviruses but not in most other RNA viruses. Previous studies of the NiRAN domain mainly focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggested different functions for this domain, such as NMPylation/RNAylation of nsp9, RNA guanylyltransferase activities involved in canonical and/or unconventional RNA capping pathways, and other functions. To help resolve partly conflicting information on substrate specificities and metal ion requirements reported previously for the SARS-CoV-2 NiRAN NMPylation activity, we extended these earlier studies by characterizing representative alpha- and betacoronavirus NiRAN domains. The study revealed that key features of NiRAN-mediated NMPylation activities, such as protein and nucleotide specificity and metal ion requirements, are very well conserved among genetically divergent coronaviruses, suggesting potential avenues for future antiviral drug development targeting this essential viral enzyme.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase/metabolism , Nucleotides/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism
8.
Biochem Biophys Res Commun ; 668: 35-41, 2023 Aug 06.
Article in English | MEDLINE | ID: covidwho-2327275

ABSTRACT

The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , DNA Helicases/chemistry , DNA/chemistry , Virus Replication , Viral Nonstructural Proteins/genetics
9.
Chem Pharm Bull (Tokyo) ; 71(5): 360-367, 2023.
Article in English | MEDLINE | ID: covidwho-2317290

ABSTRACT

Computational screening is one of the fundamental techniques in drug discovery. Each compound in a chemical database is bound to the target protein in virtual, and candidate compounds are selected from the binding scores. In this work, we carried out combinational computation of docking simulation to generate binding poses and molecular mechanics calculation to estimate binding scores. The coronavirus infectious disease has spread worldwide, and effective chemotherapy is strongly required. The viral 3-chymotrypsin-like (3CL) protease is a good target of low molecular-weight inhibitors. Hence, computational screening was performed to search for inhibitory compounds acting on the 3CL protease. As a preliminary assessment of the performance of this approach, we used 51 compounds for which inhibitory activity had already been confirmed. Docking simulations and molecular mechanics calculations were performed to evaluate binding scores. The preliminary evaluation suggested that our approach successfully selected the inhibitory compounds identified by the experiments. The same approach was applied to 8820 compounds in a database consisting of approved and investigational chemicals. Hence, docking simulations, molecular mechanics calculations, and re-evaluation of binding scores including solvation effects were performed, and the top 200 poses were selected as candidates for experimental assays. Consequently, 25 compounds were chosen for in vitro measurement of the enzymatic inhibitory activity. From the enzymatic assay, 5 compounds were identified to have inhibitory activities against the 3CL protease. The present work demonstrated the feasibility of a combination of docking simulation and molecular mechanics calculation for practical use in computational virtual screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
10.
Eur J Med Chem ; 256: 115474, 2023 Aug 05.
Article in English | MEDLINE | ID: covidwho-2315252

ABSTRACT

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.


Subject(s)
COVID-19 , Methyltransferases , Humans , Methyltransferases/metabolism , Adenosine/pharmacology , Pandemics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , S-Adenosylmethionine , RNA, Viral/genetics , Adenine
11.
Biomed Res Int ; 2023: 5469258, 2023.
Article in English | MEDLINE | ID: covidwho-2315143

ABSTRACT

SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and 3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Molecular Docking Simulation , Pandemics , Ligands , Angiotensin-Converting Enzyme 2/metabolism , Viral Nonstructural Proteins/chemistry , Molecular Dynamics Simulation , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
12.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2311672

ABSTRACT

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Subject(s)
COVID-19 , Carrier Proteins , Interferon Type I , Viral Nonstructural Proteins , COVID-19/genetics , Carrier Proteins/metabolism , Cell Line , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
13.
PLoS One ; 18(4): e0283194, 2023.
Article in English | MEDLINE | ID: covidwho-2301444

ABSTRACT

Nsp9 is a conserved accessory component of the coronaviral replication and transcription complex. It is the predominant substrate of nsp12's nucleotidylation activity while also serving to recruit proteins required for viral 5'-capping. Anti-nsp9 specific nanobodies have been isolated previously. We confirm that their binding mode is centred upon Trp-53 within SARS-CoV-2 nsp9. Antibody binding at this site surprisingly results in large-scale changes to the overall topology of this coronaviral unique fold. We further characterise the antibody-induced structural dynamism within nsp9, identifying a number of potentially flexible regions. A large expansion of the cavity between the s2-s3 and s4-s5 loops is particularly noteworthy. As is the potential for large-scale movements in the C-terminal GxxxG helix.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
14.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: covidwho-2305708

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Organelles , SARS-CoV-2 , Humans , COVID-19/virology , Endoplasmic Reticulum/virology , Membrane Proteins/metabolism , Pandemics , SARS-CoV-2/physiology , Virus Replication , Organelles/virology , Viral Nonstructural Proteins/metabolism
15.
Nat Commun ; 14(1): 2259, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2303778

ABSTRACT

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Methyltransferases/metabolism , SARS-CoV-2/genetics , Monkeypox virus/genetics , Monkeypox virus/metabolism , Viral Nonstructural Proteins/chemistry , RNA , Zika Virus/genetics , RNA, Viral/genetics
16.
Emerg Microbes Infect ; 12(1): 2204164, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2303029

ABSTRACT

SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH. We performed the assay against a reference MTase, NSP14, an essential enzyme for SARS-CoV-2 to methylate the N7 position of viral 5'-RNA guanine cap. The assay is universal and suitable for any SAM-dependent viral MTases such as the SARS-CoV-2 NSP16/NSP10 MTase complex and the NS5 MTase of Zika virus (ZIKV). Pilot screening demonstrated that the HTS assay was very robust and identified two candidate inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the NSP14 MTase with low micromolar IC50. We used three functional MTase assays to unambiguously verified the inhibitory potency of these molecules for the NSP14 N7-MTase function. Binding studies indicated that these molecules are bound directly to the NSP14 MTase with similar low micromolar affinity. Moreover, we further demonstrated that these molecules significantly inhibited the SARS-CoV-2 replication in cell-based assays at concentrations not causing cytotoxicity. Furthermore, NSC111552 significantly synergized with known SARS-CoV-2 drugs including nirmatrelvir and remdesivir. Finally, docking suggested that these molecules bind specifically to the SAM-binding site on the NSP14 MTase. Overall, these molecules represent novel and promising candidates to further develop broad-spectrum inhibitors for the management of viral infections.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , SARS-CoV-2/genetics , High-Throughput Screening Assays , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism , Binding Sites , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , Fluorescence Polarization , RNA, Viral/genetics
17.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-2295624

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Subject(s)
SARS-CoV-2 , Humans , Allosteric Regulation , Amino Acid Sequence , COVID-19 , Cryoelectron Microscopy , Endoribonucleases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry
18.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2294350

ABSTRACT

The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox virus I7L protease under the spotlight as a potential target for the development of specific and compelling drugs against this emerging disease. In the present work, the structure of the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated computational study. Furthermore, structural information gathered in the first part of the study was exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors of the monkeypox I7L protease. Finally, based on data collected within the present work, some considerations on developing allosteric modulators of the I7L protease are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pharmaceutical Preparations , Peptide Hydrolases/metabolism , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Drug Repositioning/methods
19.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2301653

ABSTRACT

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
20.
Vet Res ; 54(1): 27, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2287297

ABSTRACT

Porcine epidemic diarrhoea (PED) caused by porcine epidemic diarrhoea virus (PEDV) has led to significant economic losses in the swine industry worldwide. Histone Cluster 2, H2BE (HIST2H2BE), the main protein component in chromatin, has been proposed to play a key role in apoptosis. However, the relationship between H2BE and PEDV remains unclear. In this study, H2BE was shown to bind and interact with PEDV nonstructural protein 9 (Nsp9) via immunoprecipitation-mass spectrometry (IP-MS). Next, we verified the interaction of Nsp9 with H2BE by immunoprecipitation and immunofluorescence. H2BE colocalized with Nsp9 in the cytoplasm and nuclei. PEDV Nsp9 upregulated the expression of H2BE by inhibiting the expression of IRX1. We demonstrated that overexpression of H2BE significantly promoted PEDV replication, whereas knockdown of H2BE by small interfering RNA (siRNA) inhibited PEDV replication. Overexpression of H2BE led to significantly inhibited GRP78 expression, phosphorylated PERK (p-PERK), phosphorylated eIF2 (p-eIF2), phosphorylated IRE1 (p-IRE1), and phosphorylated JNK (p-JNK); negatively regulated CHOP and Bax expression and caspase-9 and caspase-3 cleavage; and promoted Bcl-2 production. Knocking down H2BE exerted the opposite effects. Furthermore, we found that after deletion of amino acids 1-28, H2BE did not promote PEDV replication. In conclusion, these studies revealed the mechanism by which H2BE is associated with ER stress-mediated apoptosis to regulate PEDV replication. Nsp9 upregulates H2BE. H2BE plays a role in inhibiting apoptosis and thus facilitating viral replication, which depends on the N-terminal region of H2BE (amino acids 1-28). These findings provide a reference for host-PEDV interactions and offer the possibility for developing strategies for PEDV decontamination and prevention.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Eukaryotic Initiation Factor-2 , Viral Nonstructural Proteins/genetics , Virus Replication , Protein Serine-Threonine Kinases , Amino Acids , Endoplasmic Reticulum Stress , Apoptosis , Coronavirus Infections/veterinary , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL